DEVOIR DE MECANIQUE DES SOLS TS: OGC2 / OGA2

EXERCICE N° 1

Démontrer les relations suivantes :

$$a - \gamma d = \gamma s (1 - n) = \gamma s / 1 + e$$

 $b - \gamma h = \gamma s (1 + w) / (1 + e)$
 $c - \gamma ' = (\gamma s - \gamma w) (1 - n)$
 $d - \gamma d = \gamma h / (1 + w)$

$$e-\gamma d=1/(w/\gamma w+1/\gamma s)$$

EXERCICE N°2

Soit un matériau ayant un poids initial mi = 1800 g ; après passage a l'étuve il ne pèse que 1500 g.

1 - calculer la teneur en eau du matériau

2 – un essai d'analyse granulométrique a été effectué sur ce matériau a l'aide d'une colonne de tamis et a donné les résultats figurant dans le tableau ci - dessous :

Ouverture des tamis (mm)	Refus partiel (g)	Refus cumules (g)	% refus cumulés	% tamisats
5	80			
2,5	120			
1,25	380			
0,63	210			
0,315	280			
0,160	290			
0,08	90			

- > Faite un schéma illustratif de cette colonne de tamis
- Pour un granulat que signifie le rapport d / D
- > Remplissez le tableau et tracer la courbe granulométrique de cet échantillon
- > Sur quel type de graphe on représente une courbe granulométrique
- > Calculer le module de finesse Mf, le coefficient d'uniformité CU , le coefficient de courbure CC et interpréter les résultats trouvés

EXERCICE N°3

Un échantillon de sol à un poids volumique apparent de 17,3 KN / m 3 et un indice de vide de 0 ,84

Sachant que son poids spécifique des grains solides est de 27 KN / m³

1 – déterminer :

- √ La teneur en eau
- ✓ La densité sèche
- ✓ Le degré de saturation

2 – considérons que l'échantillon est saturé calculer le poids volumique déjaugé y'

3 – un essai Proctor modifié a été réalisé sur cet échantillon et a donné les résultats suivants :

Teneur en eau (%)	2,5	4,5	6,5	8,5
Densité sèche T/m ³	2,02	2,17	2,23	2,12

Tracer la courbe Proctor et déterminer la densité sèche maximale et la teneur en eau opt

En déduire le densité humide maximale

1 – pour contrôler la compacité in situ un essai au densitomètre a été effectué :

Volume du trou V = 966 cm 3

Poids des matériaux extrait P = 2115 g

500 g du matériaux a été prélevé et a fait l'objet d'un séchage à l'étuve a 105 ° C en vue de déterminer la teneur en eau

Apres 24h dans l'étuve il ne pèse plus que 477 g

- Calculer la teneur en eau
- Déterminer la densité sèche du matériau
- Calculer le degré de compacité DC
- Supposons que le DC est inferieur à 95 % sur quels paramètres peut on agir pour avoir un DC compris entre 95 a 98 % ?