ÉCOLE DES MINES DE L'INDUSTRIE ET DE LA GÉOLOGIE(EMIG)

CONCOURS D'ENTRÉE SESSION SEPTEMBRE 2015 - CYCLE INGÉNIEUR

ÉPREUVE DE : MATHÉMATIQUES

DURÉE : **4 H** — COEF : **4**

Exercice nº1 (4 points)

- 1. On considère la suite $(U_n)_{n\in\mathbb{N}}$ définie par : $U_n=\mathrm{e}^{-n}$.
 - (a) Justifier que la suite $(U_n)_{n\in\mathbb{N}}$ est décroissante. $(0,25 \ point)$
 - (b) Montrer que pour tout entier $n \in \mathbb{N}$ on a : $0 < U_n \le 1$. $(0,25 \ point)$
- 2. Étudier le signe de la fonction $h(t) = 1 \ln t$. $(0.5 \ point)$
- 3. Calculer la dérivée de la fonction g(t) définie sur $]0 + \infty[$ par : $g(t) = t(2 \ln t)$. (0.5 point)
- 4. Déduire de la question précédente une primitive H de la fonction h qui s'annule en $t=\mathrm{e}^2$. $(0,25\ point)$
- 5. On Considère la suite $(V_n)_{n\in\mathbb{N}}$ définie par :

$$V_n = \int_{e^{-(n+1)}}^{e^{-n}} (1 - \ln t) dt$$

- (a) Justifier que; $\forall n \in \mathbb{N}$, on a: $V_n \geq 0$. $(0.5 \ point)$
- (b) Déduire de la question 4. l'expression de V_n en fonction de n . $(0,5\ point)$
- (c) Déterminer alors $\lim_{n\to+\infty} V_n$. (0,5 point)
- 6. Pour tout entier $n \in \mathbb{N}$ on pose : $S_n = V_0 + V_1 + \cdots + V_n$.
 - (a) Donner l'expression de S_n en fonction de n . $(0,5 \ point)$
 - (b) Déterminer $\lim_{n\to+\infty} S_n$. (0,25 point)

Exercice n°2 (6 points)

Soit J la matrice définie par : $J=\begin{pmatrix}0&1&0\\0&0&1\\1&0&0\end{pmatrix}$

 \overrightarrow{E} désigne l'espace vectoriel réel orienté muni d'une base orthonormée directe $\beta=(\vec{i},\vec{j},\vec{k})$. Soit f l'endomorphisme de \overrightarrow{E} définie par la matrice J relativement à la base β et $\vec{u}=\frac{1}{\sqrt{3}}(\vec{i}+\vec{j}+\vec{k})$.

- 1. Calculer $f(\vec{u})$ et prouver que le plan (Q) d'équation x+y+z=0 est stable par f c'est-à-dire l'image par f de tout vecteur de (Q) appartient à (Q) -. $(1,5 \ point)$
- 2. On pose : $\vec{v} = \vec{i} + \frac{1}{2}(-\vec{j} \vec{k})$ et $\vec{w} = \vec{u} \wedge \vec{v}$

1/2

- (a) Vérifier que (\vec{v}, \vec{w}) est une base du plan (Q) . $(1 \ point)$
- (b) $(\vec{u}, \vec{v}, \vec{w})$ est-elle une base orthonormée directe de \overrightarrow{E} ? (1 point)
- (c) Trouver un réel θ tel que :

$$f(\vec{v}) = \cos\theta \, \vec{v} + \sin\theta \, \vec{w}$$
 et $f(\vec{w}) = -\sin\theta \, \vec{v} + \cos\theta \, \vec{w}$. (1,5 point)

(d) Que savez-vous de la nature géométrique de la restriction de f à (Q)? $(1 \ point)$

Exercice n°3 (10 points)

Soit (E) l'équation différentielle : $(1-x)^2y'=(2-x)y$. On note $I=]-\infty$ 1[.

- 1. Calculer une primitive A de la fonction a définie par : $a(x) = \frac{2-x}{(1-x)^2}$. $(1,5 \ point)$
- 2. Intégrer (E) sur I . (1 point)
- 3. Soit f la fonction définie sur I par : $f(x) = \frac{1}{1-x} \exp\left(\frac{1}{1-x}\right)$. (exp(x) désigne la fonction exponentielle : e^x)
 - (a) Calculer le développement limité de f au voisinage de 0 à l'ordre 3 . (2 points)
 - (b) Prouver par récurrence que pour tout entier naturel n, il existe un polynôme $P_n(X)$ tel que :

$$f^{(n)}(x) = P_n\left(\frac{1}{1-x}\right) \exp\left(\frac{1}{1-x}\right) \quad \forall x \in I.$$

La démonstration permet d'exprimer $P_{n+1}(X)$ en fonction de $P_n(X)$, $P'_n(X)$ et X. Expliciter cette relation. (2 **points**)

- (c) Préciser $P_0(X)$, $P_1(X)$, $P_2(X)$ et $P_3(X)$. (1,5 point)
- 4. En dérivant $\,n\,$ fois les deux membres de l'équation $\,(E)\,$ prouver que :

$$P_{n+1}(X) = [(2n+1)X + X^2]P_n(X) - n^2X^2P_{n-1}(X)$$
. (2 points)

2/2