Devoir n°1

Durée : 2 heures

L'usage des téléphones portables (même comme calculatrices) n'est pas autorisé. Les formulaires des fonctions trigonométriques et hyperboliques réelles ainsi que la table des primitives des fonctions usuelles, sont autorisés.

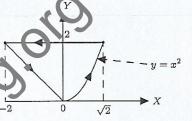
Exercice nº1(7 points)

1. Soient ϕ une fonction des variables réelles x, y telle que $F(x-a\phi,y-b\phi)=0$, où F est une fonction différentiable(dérivées partielles continues). Montrer que :

$$a\frac{\partial \phi}{\partial x} + b\frac{\partial \phi}{\partial y} = 1.$$

2. Vérifier la formule de Green-Riemann sur le contour ci-contre pour la forme différentielle :

$$\omega = (2xy - y^2)dx + x^2dy$$



Exercise nº2 (7 points)

Le plan complexe est coupé suivant à de mi-droite $\operatorname{Arg}(z)=\pi/4$. On donne :

$$\log(1) = 1\pi i$$
 et $\arcsin(z) = -i\log(iz + \sqrt{1-z^2})$

√ désigne la détermination rincipale de la fonction racine.

Mettre sous for le algébrique les nombres complexes suivants :

$$z_1 = (1+i)^{2i+1}$$
 , $z_2 = \log(1+i\sqrt{2})$, $z_3 = \arcsin\left(i\frac{\sqrt{3}}{2}\right)$

Exercice nº3 (6 points)

On considère la fonction de deux variables réelles $\,Q(x,y)=x^2-y^2+xy\,.$

- 1. Montrer que Q est une fonction harmonique.
- 2. Déterminer la fonction f holomorphe sur D (Préciser D) de partie imaginaire Q avec f(0)=1 .
- 3. Calculer f'(z).
- 4. Exprimer f en fonction de la variable z = x + iy.