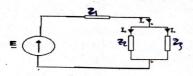


Prof : Dr BOUREIMA Seibou Devoir N° 1 : Courant Alternatif Monophasé IG – TC 2017 Date : 15 /03/17

Exercice N °1 : (6 pts)

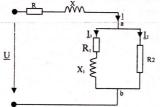
Soit le circuit ci- dessous, on donne les valeurs suivantes :

E= 120 V; f = 50 Hz;

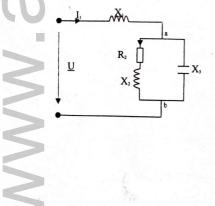

 $Z_4 = R_{1+j} X_1 = 10 + j 6 (\Omega)$;

 $\underline{Z}_2 = R_2 + j X_2 = 24 - j 7 \quad (\Omega);$ $\underline{Z}_3 = R_3 + j X_3 = 15 + j 20 \quad (\Omega);$

Déterminer :


a) les courants <u>l</u>₁ ; <u>l</u>₂ ; <u>l</u>₃ et <u>U</u>_{ab} sous la forme Exponentielle ;

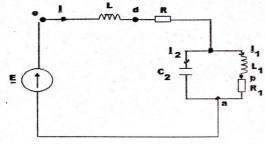
b) les puissances active, réactive du circuit ;


Exercice N°2: (4 pts)

Soit le circuit ci-dessous, on donne : $R = 5 \Omega$; $X = 11 \Omega$; $R_1 = 10 \Omega$; $X_1 = 25 \Omega$; f = 50 Hz a) Quelle doit être la valeur de la résistance R_2 pour que le courant I_1 qui traverse l'impédance $I_1 = R_1 + J I_2$ soit déphasé de 90° par rapport à la tension $I_2 = I_2$;

Exercice N °3: (4 pts)

Soit le circuit ci-dessous, on donne : R_2 = 40 Ω ; X_2 = 100 Ω ; X_3 = 20 Ω ; U = 30 V. Trouver la valeur de X_1 si X_2 = 12 A.



Exercice N °4: (6 pts)

Soit le circuit ci-dessous, on donne : I_1 = 1A; R_1 = 10 Ω ; X_{11} =10 Ω ; X_{c} = 14,1 Ω ; R =2,5 Ω ; X_{L} = 20 Ω ; f = 50 Hz. On vous demande de faire la représentation vectorielle de courants et tensions dans un même plan.

